Вопрос по геометрии:
Радиус окружности описанной около правильного четырёхугольника равна 6√2 вычислите отношение площади четырёхугольника к площади круга вписанного в данный четырёхугольник
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 27.04.2018 17:52
- Геометрия
- remove_red_eye 6141
- thumb_up 7
Ответы и объяснения 1
Правильный четырехугольник - это квадрат. Радиус описанной окружности равен половине его диагонали, значит, диагональ квадрата равна 12√2. Известно, что сторона квадрата в √2 раз меньше его диагонали, значит, сторона равна 12. Площадь квадрата равна квадрату его стороны, то есть S=12²=144.
Диаметр вписанного в квадрат круга равен стороне квадрата, а радиус круга равен половине диаметра, значит, радиус равен 6. Площадь круга равна πR², то есть 36π. Отношение площади квадрата к площади круга, вписанного в него, равно 144/36π=4/π.
- 28.04.2018 18:42
- thumb_up 25
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.