Вопрос по геометрии:
Катеты прямоугольного треугольника равны 15 см и 20см. Из вершины прямого угла к плоскости этого треугольника восстановлен перпендикулярно длиной 35 см. Вычислить расстояние от концов этого перпендикуляра до гипотенузы.
- 04.02.2017 10:37
- Геометрия
- remove_red_eye 18979
- thumb_up 39
Ответы и объяснения 1
Пусть а=15, в=20. Найдем длину гипотенузы по теореме Пифагора: 15^2+20^2=625/ значит гипотенуза с=25 Расстояние- это есть перпендикуляр. Опусти перпендикуляр из вершины прямого угла, пусть точка К, соедини с концом перпендикуляра к плоскости. Найдем длину высоты, опущенного их вершины прямого угла.По теоремам о среднем пропорциональном имеем:
а^2=с*а(с), а(с)=15^2/25=225/25=9/, где а(с) - проекция катета а на гипотенузу. Тогда другая проекция будет в(с)=25-9=16.
h^2=a(c)*b(c)=9*16. h=3*4=12.
искомое расстояние равен по теореме Пифагора d^2=h^2+35^2=144+1225=1369.
d=37
Ответ 37.
- 05.02.2017 13:25
- thumb_up 16
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.