Пожаловаться
- 14.05.2017 02:42
- Геометрия
- remove_red_eye 2067
- thumb_up 7
Ответы и объяснения 1
Решение:
1) В Δ BCD ∠BDC = 90°, ∠DCB = 30°, тогда ∠DBC = 60°.
2) В Δ ABC ∠BAC = 90° - ∠ABC = 90° - 60° = 30°.
3) В Δ BCD ∠BDC = 90°, ∠DCB = 30°, тогда по теореме DB =
BC, BC = 2·4 = 8.
4) В Δ ABC ∠BAC = 30°., тогда BC =
AB, AB = 2·8 = 16, AD = AB - BD = 16 - 4 = 12.
5) По теореме о пропорциональных отрезках в прямоугольном треугольнике CD² = DB·DA = 12·4 = 48
CD = √48 = √16·3 = 4·√3.
6) В Δ ACD ∠ADC = 90°, ∠DAC = 30°, тогда по теореме DC =
AC, AC = 2·4√3 = 8√3.
(Можно было найти катет AC по-другому: по теореме Пифагора или
по теореме о пропорциональных отрезках в прямоугольном треугольнике. CA² = AB·AD = 16·12 , CA = √16·4·3 = 4·2√3 = 8√3).
Ответ: х = CD = 4√3; у = AC = 8√3.
1) В Δ BCD ∠BDC = 90°, ∠DCB = 30°, тогда ∠DBC = 60°.
2) В Δ ABC ∠BAC = 90° - ∠ABC = 90° - 60° = 30°.
3) В Δ BCD ∠BDC = 90°, ∠DCB = 30°, тогда по теореме DB =
4) В Δ ABC ∠BAC = 30°., тогда BC =
5) По теореме о пропорциональных отрезках в прямоугольном треугольнике CD² = DB·DA = 12·4 = 48
CD = √48 = √16·3 = 4·√3.
6) В Δ ACD ∠ADC = 90°, ∠DAC = 30°, тогда по теореме DC =
(Можно было найти катет AC по-другому: по теореме Пифагора или
по теореме о пропорциональных отрезках в прямоугольном треугольнике. CA² = AB·AD = 16·12 , CA = √16·4·3 = 4·2√3 = 8√3).
Ответ: х = CD = 4√3; у = AC = 8√3.
Пожаловаться
- 15.05.2017 13:03
- thumb_up 50
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
Новые вопросы
Интересные вопросы