Вопрос по геометрии:
В трапецию вписана окружность радиуса 6. точка касания делит одно из оснований на отрезки 9 и 12. Найти стороны и площадь трапеции
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 20.01.2017 00:56
- Геометрия
- remove_red_eye 18039
- thumb_up 18
Ответы и объяснения 1
Вариант решения.
Обозначим трапецию АВСД, ВС и АД - основания.
Отрезки касательных к окружности, проведенных из одной точки, равны.⇒
АМ=АН=9, КД=ДН=12, ВМ=ВТ=х, СТ=СК=у
Соединим вершины трапеции с центром окружности.
Центр вписанной в угол окружности лежит на его биссектрисе.⇒ Центр вписанной в трапеции окружности лежит в точке пересечения биссектрис её углов.
Сумма углов при боковой стороне трапеции равна 180°, сумма их половин равна 90°, ⇒ ∆ АОВ и ∆ СОВ прямоугольные, радиусы ОМ и ОК– их высоты.
Высота прямоугольного треугольника - среднее пропорциональное между проекциями его катетов на гипотенузу.
ОМ²=АМ•ВМ
36=9•х⇒
х=36:9=4
Аналогично ОК²=ДК•СК
36=12•у
у=36:12=3
АВ=9+4=13
ВС=3+4=7
CD=12+3=15
АД=9+12=21
Площадь трапеции равна произведению высоты на полусумму оснований.
Высота описанной трапеции равна диаметру вписанной окружности
h=2r=12
S=(7+21)•12:2=168 ед. площади.
- 21.01.2017 11:22
- thumb_up 23
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.