Вопрос по геометрии:
Из внешней точки к окружности проведены две касательные и в фигуру ,ограниченную дугой окружности и касательными,вписана вторая окружность.Расстояния от данной точки до центров окружностей равны 6 и 18.Найдите радиусы окружностей
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 14.01.2018 16:59
- Геометрия
- remove_red_eye 2398
- thumb_up 27
Ответы и объяснения 1
Пусть внешняя точка будет А,
точки касания с одной из касательных большей окружности -М, меньшей -Н, центр большей окружности - В, меньшей - С, точка касания окружностей -К, радиус большей окружности R, меньшей- r.
По условию АС=6, АВ=18
Отсюда R+r=18-6=12
R=12-r
Проведем к точкам касания каждой окружности радиусы.
Радиус, проведенный к точке касания, перпендикулярен касательной. Треугольники АМВ и АНС подобны - прямоугольные с общим углом при А.
Из их подобия следует отношение:
АС:АВ=СН:ВМ
6:18=r:(12-r)
6*12-6r=18r, откуда r=3 ⇒
R=12-3=9
- 15.01.2018 05:58
- thumb_up 5
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.