Вопрос по геометрии:
АВСД-трапеция,ВС паралельна АД,О-точка пересечения ее диагоналей, АС перпендикулярна ВД,Площадь ВОС=16 корней из 2,площадь АОД 36 корней из 2,АВ=СД.Найдите площадь треугольника АОВ
- 14.06.2017 18:33
- Геометрия
- remove_red_eye 13589
- thumb_up 32
Ответы и объяснения 1
Поскольку треугольники АОД и ВОС подобны, то их площади относятся как квадраты сходственных сторон, то есть Sаод/Sвос=ОДквадрат/ОВквадрат=36 корней из2/16 корней из 2=9/4. Отсюда АО/ОС=ОД/ОВ=3/2. Пусть АС=Х, ВД=У. Тогда ОВ=2/5*У, ОС=2/5*Х, АО=3/5*Х. Поскольку диагонали перпендикулярны, то треугольники ВОС и АОВ прямоугольные. Sвос=1/2*(2/5*Х)*(2/5*У)=16 корней из 2. Отсюда Х*У=200корней из2. Sаов=1/2*(3/5*X)*(2/5*У)=3/25*Х*У==3/25*(200 корней из 2)=24 корня из 2.
- 15.06.2017 08:56
- thumb_up 15
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.