Вопрос по геометрии:
Найдите радиус окружности, вписанной прямоугольный треугольник, если биссектриса осторого угла делит его противолежащий катет на отрезки длиной 8 см и 17 см
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 03.07.2018 01:33
- Геометрия
- remove_red_eye 11194
- thumb_up 6
Ответы и объяснения 1
Составим систему уравнений:
{х² + (8+17)² = y²,
{(x/8) = (y/17) (по свойству биссектрисы).
Из второго уравнения у = (17х)/8 подставим в первое уравнение.
х² + 625 = (289х²)/64,
64х² + 625*64 = 289х²,
225х² = 40000,
х = √(40000/225) = 200/15 = 40/3.
Тогда гипотенуза равна (17*40)/(3*8) = 85/3.
Радиус окружности, вписанной прямоугольный треугольник, находим по формуле:
r = (a+b-c)/2 = ((40/3)+25-(85/3))/2 = (40+75-85)/6 = 30/6 = 5.
- 04.07.2018 05:00
- thumb_up 31
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.