Вопрос по геометрии:
Найдите площадь ромба, сторона которого 25 см, а меньшая диагональ 14 см.
Пожаловаться
- 09.04.2017 16:39
- Геометрия
- remove_red_eye 18804
- thumb_up 35
Ответы и объяснения 1
Диагонали ромба делят ромб на четыре равных прямоугольных треугольника. Точка пересечения диагоналей делит диагонали пополам. Следовательно,
14 : 2 = 7 см - это половина второй диагонали.
Найдем половину первой диагонали с помощью теоремы Пифагора:
с² = а² + b², где с - гипотенуза = сторона ромба = 25 см,
а и b - катеты = половины диагоналей ромба. Пусть а = 7 см, найдем b.
см - половина второй диагонали
24 * 2 = 48 см - вторая диагональ, т.е. d₂
см² - площадь ромба
----------------------------------------------------------------------------------------------------
14 : 2 = 7 см - это половина второй диагонали.
Найдем половину первой диагонали с помощью теоремы Пифагора:
с² = а² + b², где с - гипотенуза = сторона ромба = 25 см,
а и b - катеты = половины диагоналей ромба. Пусть а = 7 см, найдем b.
24 * 2 = 48 см - вторая диагональ, т.е. d₂
----------------------------------------------------------------------------------------------------
Пожаловаться
- 01.01.1970 00:00
- thumb_up 45
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
Новые вопросы
Интересные вопросы