Вопрос по геометрии:
Точки (−1; 5) и (7;−1) задают концы диаметра окружности. Найдите параллельный перенос, при котором центр данной окружности переходит в точку ′ (−5;−3). Запишите уравнения полученной окружности.
- 20.02.2018 07:38
- Геометрия
- remove_red_eye 12063
- thumb_up 37
Ответы и объяснения 1
Найдём центр исходной окружности, найдя координату центра прямой, соединяющей исходные точки: x₀ = (-1 + 7 ) /2 = 3 y₀ = (5 - 1) / 2 = 2
Итак, центр исходной окружности находится в точке (3;2)
Для того, чтобы она попала в точку (-5;-3), нужно сместить окружность на
(3 - (-5)) = 8 единиц вниз, и на (2 - (-3)) = 5 влево.
Найдём уравнение этой окружности:
Её радиус равен половине диаметра, то есть, используя исходные координаты, найдем сначала её диаметр:
d {7 - (-1); -1 - 5}
d {8; -6}
d = √(64 + 36) = 10
Отсюда радиус равен 5.
Зная центр окружности, составляем уравнение:
(x - 3)² + (y - 2)² = 5²
(x - 3)² + (y - 2)² = 25
- 21.02.2018 18:47
- thumb_up 6
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.