Вопрос по геометрии:
Периметр равнобедренного тупоугольного треугольника равен 45 см, а одна из его сторон больше другой на 9 см. Найдите стороны
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 04.10.2016 03:55
- Геометрия
- remove_red_eye 5300
- thumb_up 32
Ответы и объяснения 1
Рассмотрим два случая.
1. Основание больше боковой стороны на 9 см.
Тогда боковые стороны равны х см, основание равно (х +9)см.
Имеем уравнение х+х+(х+9)=45
3х=45-9
3х=36
х=12
Имеем треугольник со сторонами 12,12, 21 см. Это тупоугольный треугольник, так как выполняется неравенство 21²>12²+12² (т.е.441>288)
2. Боковая сторона больше основания на 9 см. Тогда
основание равно х см, боковая сторона (х+9) см.
Имеем уравнение. х+2*(х+9)=45
х+2х+18=45
3х=27
х=9.
Тогда стороны треугольника 9,18,18 см.
Треугольник является остроугольным, так как для наибольшей стороны 18 см выполняется неравенство 18²<18²+9².
Значит, искомые стороны треугольника -12,12, 21 см.
- 05.10.2016 01:45
- thumb_up 48
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.