Вопрос по геометрии:
Докажите,если две окружности имеют общую хорду,то прямая,проходящая через центры эти окружностеи,перпендикулярна даннои хорде.
- 02.07.2017 23:13
- Геометрия
- remove_red_eye 11314
- thumb_up 38
Ответы и объяснения 1
Пусть АВ - общая хорда, О - центр первой окружности, К - центр второй окружности, пусть пряммая ОК проходящая через центры окружностей пересекает хорду АВ в точке Р.
Треугольники ОАК и ОВК равны за тремя сторонами:
АО=ВО, АК=ВК - как радиусы
ОК=ОК
из равенства треугольников
угол ОКА=угол ОКВ
поэтому ОР - биссектрисса угла АОК
Биссектрисса равнобдеренного треугольника является его высотой.
Поэтому пряммая ОК перпендикулярна хорде АВ, что и требовалось доказать.
- 04.07.2017 15:13
- thumb_up 4
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.