Вопрос по алгебре:
Докажите, что не существует натурального числа, которое при делении на 18 даёт в остатке 13, а при делении на 21 даёт в остатке 2
- 16.05.2018 19:39
- Алгебра
- remove_red_eye 1599
- thumb_up 29
Ответы и объяснения 1
Пусть такое число существует тогда частное от деления на 12 этого числа пусть будет x, a частное от деления на 18 этого числа-y, тогда 12*x+11=наше число=18*y+1, тогда 18*y-12*x=10, вынесем 6 за скобки в правой части получится 6*(3*y-2*x)=10, значит правая часть уравнения кратна 6, а левая нет(10 не кратно 6)значит наше уравнение неверно то есть таких чисел нет
- 17.05.2018 05:26
- thumb_up 29
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.