Вопрос по геометрии:
Через вершину конуса под углом 60 градусов к основанию проведена плоскость сечением конуса данной плоскостью является треугольник с углом 60 градусов найдите отношение площади сечения к площади боковой поверхности конуса
- 25.04.2018 11:34
- Геометрия
- remove_red_eye 9254
- thumb_up 39
Ответы и объяснения 1
площадь сечения
S₁ = 1/2*1*1*sin(60°) = √3/4
Площадь боковой поверхности конуса
S₂ = π·r·l
где r - радиус основания, l - образующая, у нас l=1, радиус будем искать.
Площадь треугольника ОРТ через основание и высоту
S₁ = 1/2*РТ*ОВ = 1/2*1*ОВ = √3/4
ОВ = √3/2
Теперь с треугольником ОВН
ОН/ОВ = sin(60°)
ОН = OВ*sin(60°) = √3/2*√3/2 = 3/4
Теперь с треугольником ОТН
ТН² + ОН² = ОТ²
ТН² + (3/4)² = 1²
ТН² = 7/16
ТН = √7/4
---
S₂ = π·√7/4·1 = π√7/4
И требуемое отношение
S₁/S₂ = √3/4/(π√7/4) = √3/(π√7)
- 26.04.2018 10:53
- thumb_up 50
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.