Вопрос по геометрии:
Из вершины тупого угла ромба равного 120 градусов проведена высота которая отсекает от стороны отрезка 12 см. Найдите периметр ромба и длину меньшей диагонали
- 11.01.2017 22:53
- Геометрия
- remove_red_eye 1732
- thumb_up 33
Ответы и объяснения 1
Смежные углы ромба в сумме равны 180°.
Значит В прямоугольном треугольнике АВН угол АВН=30° (сумма острых углов равна 90°). Против угла 30° лежит катет (отрезок 12см), равный половине гипотенузы (стороны ромба). Значит сторона равна 24см.
Тогда периметр равен 96см (у ромба 4 равных стороны).
Диагонали ромба взаимно перпендикулярны, являются биссектрисами углов ромба и точкой пересечения О делятся пополам.
В треугольнике АВD стороны АВ и AD равны (стороны ромба), а угол при вершине равен 60°. Значит треугольник равносторонний и меньшая диагональ равна стороне ромба, то есть 24см.
Ответ: сторона 24см, периметр 96см, меньшая сторона 24см.
- 12.01.2017 07:05
- thumb_up 22
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.