Вопрос по геометрии:
Из точки А к окружности проведена касательная АТ и секущая, пересекающая окружности в точках Е и М. МТ - диаметр окружности. АТ=6, АЕ=2, МЕ=10.
А)Найти радиус окружности.
Б)Найти угол АТЕ
- 16.03.2017 20:46
- Геометрия
- remove_red_eye 4282
- thumb_up 32
Ответы и объяснения 1
AM² = AT² + TM²
AM = AE+ME = 2+ 10 = 12.
TM² = AM² - AT² = 12² - 6² = 6²·2² - 6² = 6²·(4-1) = 3*6²,
TM = √(3*6²) = 6*√3.
Искомый радиус равен половине диаметра ТМ.
R = TM/2 = (6*√3)/2 = 3*√3.
Угол между касательной и секущей, проходящей через точку касания, равен половине отсекаемой дуги окружности.
sin(
- 17.03.2017 22:03
- thumb_up 32
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.