Вопрос по геометрии:
Найдите высоту прямоугольного треугольника,проведенную из вершины его прямого угла,если гипотенуза равна 13 см,а один из катетов 5 см
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 10.03.2017 17:26
- Геометрия
- remove_red_eye 7282
- thumb_up 28
Ответы и объяснения 1
Решить эту задачу можно разными способами.
Способ 1.
Прямоугольный треугольник с катетом 5 и гипотенузой 13 относится к Пифагоровым тройкам с отношением сторон 5:12:13. ⇒ АС=12 ( можно найти и по т.Пифагора)
sin∠CAB=ВС/АВ=5/13
В прямоугольном ∆ СНА ∠CAH=∠CAB ⇒ CH/AC=5/13
CH=5•12:13
CH=60/13
* * *
Способ 2
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.
СВ²=АВ•BH
25=13•BH⇒
BH=25/13
CH=√(BC²-BH²)=√(25•144:169)=60/13=4⁸/₁₃
Пусть дан ∆ АВС, ∠С=90°. АВ=13; ВС=5.
Решить эту задачу можно разными способами.
Способ 1.
Прямоугольный треугольник с катетом 5 и гипотенузой 13 относится к Пифагоровым тройкам с отношением сторон 5:12:13. ⇒ АС=12 ( можно найти и по т.Пифагора)
sin∠CAB=ВС/АВ=5/13
В прямоугольном ∆ СНА ∠CAH=∠CAB ⇒ CH/AC=5/13
CH=5•12:13
CH=60/13
* * *
Способ 2
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.
СВ²=АВ•BH
25=13•BH⇒
BH=25/13
CH=√(BC²-BH²)=√(25•144:169)=60/13=4⁸/₁₃
* * *
При желании можно найти СН и другими способами.
- 11.03.2017 19:37
- thumb_up 1
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.