Вопрос по геометрии:
Точка C середина отрезка AB не пересекающего плоскость b. прямые AA1, BB1 и CC1 параллельны между собой, причем точки A1, B1 и C1 принадлежат плоскости b. Найдите отношение отрезков AA1 и CC1, если AA1:BB1=7:2
- 27.03.2017 07:51
- Геометрия
- remove_red_eye 8703
- thumb_up 42
Ответы и объяснения 1
Рассмотрим плоскость (р) проходящую через АВ и одну из параллельных прямых (например АА1). Так как остальные две прямые имеют по общей точке с этой плоскостью (В и С) и параллельны АА1, то они также лежат в плоскости р. Значит вся фигура АА1ВВ1 лежит в плоскости р, это трапеция и СС1 ее средняя линия. Значит
СС1=(АА1+ВВ1)/2=9/2 (в тех же единицах что АА1 и ВВ1).
Тогда АА1:СС1=7:(9/2)=(14/2):(9/2)=14:9 !!!
- 28.03.2017 05:24
- thumb_up 44
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.