Вопрос по геометрии:
Радіус кола, вписаного в рівнобедренний трикутник АВС(АВ=ВС), дорівнює 12см, а відстань від центра цього кола до вершини В - 20см. Знайдіть периметр даного трикутника.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 17.06.2018 07:42
- Геометрия
- remove_red_eye 16181
- thumb_up 24
Ответы и объяснения 1
Проведем из вершины В высоту ВН к АС. В равнобедренном треугольнике высота еще биссектриса и медиана. ⇒ АН=НС
ВО=20 см, ОН=12 см.
ВН=ВО+ОН=32 см
Из центра вписанной окружности проведем радиус ОМ в точку касания с боковой стороной ВС.
∠ВМО=90º ( радиус в точке касания перпендикулярен стороне),
ОМ=12 см
ВМ =16 ( не делала вычислений, т.к. прямоугольный треугольник с отношением катета и гипотенузы 3:5- египетский. Можно найти ВМ и по т. Пифагора)
Треугольники ВНС и ВМО подобны: прямоугольные и имеют общий угол В.
Тогда ВО:ВС=ВМ:ВН
20:ВС=16:32
16 ВС=640
ВС-40 см
Отрезки касательных из одной точки до точки касания равны.
⇒ МС=НС
МС=ВС-МС= 40-16=24 см
АС=2НС=24*2=48 см
Р=АВ+ВС+АС=40+40+48=128 см
- 18.06.2018 16:10
- thumb_up 20
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.