Вопрос по геометрии:
На отрезке AB выбрана точка C так, что AC=80 и BC=2. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведенной из точки B к этой окружности.
- 17.09.2016 07:57
- Геометрия
- remove_red_eye 13915
- thumb_up 25
Ответы и объяснения 1
Пусть точка пересечения касательной и окружности = К. Треугольник АКВ- прямоугольный ( Свойство касательной к окружности , проведённой из данной точки , лежащей вне окружности ) , причём угол К=90 град .
Катет АК=R=80 , гипотенуза АВ=АС+СВ=80+2=82
По теореме Пифагора : ВК²=АВ²-АК² ВК²=82²-80²=6724-6400=324
ВК=√324=18
Ответ: 18
- 18.09.2016 20:55
- thumb_up 7
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.