Вопрос по геометрии:
Высота прямоугольного треугольника, проведённая из вершины прямого углак гипотенузе, равна 4√3. Один из катетов равен 8. Найдите площадь исходного треугольника.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 16.07.2018 18:12
- Геометрия
- remove_red_eye 7510
- thumb_up 43
Ответы и объяснения 2
Sin α=4√3:8=√3/2
<α=60 - острый угол прилежащий к катету =8
180-90-60=30 - второй острый угол прямоугольного треугольника, лежащий против катета =8
Катет лежащий против угла в 30 = половине гипотенузы, т.е.
8*2=16 - гипотенуза, высота проведенная к гипотенузе = 4√3
S=16*4√3:2=32√3
- 18.07.2018 02:10
- thumb_up 14
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.