Вопрос по геометрии:
В окружность радиуса 10 вписан треугольник, вершины которого делят окружность в отношении 2:5:17. Найдите площадь треугольника.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
- 22.10.2016 13:03
- Геометрия
- remove_red_eye 15780
- thumb_up 40
Ответы и объяснения 1
глы треугольника равны: 2*pi/24; 5*pi/24; 17*pi/24
Площадь треугольника равна (1/2)*a*b*sin(c)
a=2R*sin(5*pi/24)
b=2R*sin(17*pi/24)=2R*sin((pi-7*pi)/24=2R*sin(7*pi/24)
sin(c)=sin(2*pi/24)
Тогда
S=(1/2)*2R*sin(5*pi/24)*2R*sin(7*pi/24)*sin(2*pi/24)=
=2R^2*sin(5*pi/24)*sin(7*pi/24)*sin(2*pi/24)=
=2R^2*sin(2*pi/24)*[(1/2)*cos((7*pi-5*pi)/24)-(1/2)*cos(7*pi+5*pi))/24]=
=R^2*sin(pi/12)*cos(pi/12)-R^2*sin(pi/12)cos(pi/2)=
=R^2*(1/2)*sin(pi/6)=
=R^2*(1/2)*(1/2)=
=R^2/4
- 23.10.2016 17:08
- thumb_up 25
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.