Вопрос по геометрии:
Дан ромб с диагоналями 6 и 8. Найдите радиус окружности, вписанной в ромб.
- 26.10.2016 03:42
- Геометрия
- remove_red_eye 6252
- thumb_up 30
Ответы и объяснения 2
Радиус вписанной окружности r=S/p=d1*d2/(4*a), где a-сторона ромба, d1 и d1 - диагонали ромба
По теореме Пифагора a=корень((d1/2)^2+(d2/2)^2)
Cовмещая, получаем r=d1*d2 / (4*корень((d1/2)^2+(d2/2)^2))
Подставляя заданные значения. получаем r=6*8 / (4*корень((6/2)^2+(8/2)^2)) = 2,4
- 26.10.2016 21:01
- thumb_up 12
Пусть имеем ромб ABCD, т. О - точка пересечения диагоналей
Найдем сторону ромба
AO=OC=6/2=3
DO=OB=8/2=4
(AB)^2=(AO)^2+(OB)^2
(AB)^2=3^2+4^2=9+16=25
AO=sqrt(25)=5- сторона ромба
Площадь ромба равна
S=d1*d2/2=6*8/2=24
С другой стороны площадь ромба равна
S=a*h => h=S/a=24/5=4,8
- 28.10.2016 02:11
- thumb_up 31
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.