Вопрос по алгебре:
Решить уравнение:1)tgx·sin²y·dx+cos²x·ctgy·dy=0
2)y''-hy'=0 (h≠o)
3)y''+2y'+5=0
- 17.03.2018 16:26
- Алгебра
- remove_red_eye 17008
- thumb_up 24
Ответы и объяснения 1
1)tgx·sin²y·dx+cos²x·ctgy·dy=0 - уравнение с разделяющимися переменными.
(tgxdx/cos²x)=-ctgydy/sin²y
интегрируем
∫(tgxdx/cos²x)=-∫ctgydy/sin²y
или
∫tgxd(tgx)=∫ctgyd(ctgy)
tg²x/2=ctg²y/2+с
или
умножим на 2 и обозначим С=2с
tg²x=ctg²y+С
О т в е т. tg²x=ctg²y+С
2) Уравнение, допускающее понижение порядка.
Замена переменной
y`=z
y``=z`
z`-hz=0
Уравнение с разделяющимися переменными
dz/dx=hz⇒ dz/z=hdx
интегрируем
∫(dz/z)=∫hdx;
ln|z|=hx+c
z=e^(hx+c)=C₁eˣ
y`=C₁eˣ- уравнение с разделяющимися переменными
у=С₁eˣ+C₂
О т в е т. у=С₁eˣ+C₂
3) Уравнение второго порядка с постоянными коэффициентами.
Составляем характеристическое уравнение
k²+2k+5=0
D=4-4·5=-16
√D=4i
k₁,₂=(-2±4i)/2=-1±2i
Общее решение имеет вид
у=e⁻ˣ(С₁cos2β+C₂sin2β)
О т в е т. у=e⁻ˣ(С₁cos2β+C₂sin2β)
- 19.03.2018 00:19
- thumb_up 6
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.