Вопрос по алгебре:
Помогите пожалуйста доказать!!!Доказать,что биссектрисы углов прямоугольника при пересечении образуют квадрат.
- 05.02.2018 15:31
- Алгебра
- remove_red_eye 17241
- thumb_up 11
Ответы и объяснения 1
Решение. Пусть MNPQ — четырехугольник, образованный при пересечении биссектрис углов прямоугольника ABCD (рис. 56).
Четырехугольник MNPQ — прямоугольник.
Докажем, что MN=NP.
Треугольник AND - равнобедренный, так как угол 1 = углу 2= 45 градусов, поэтому AN=DN.
Ho AM=DP, так как треугольник ABM=тр.DPC (по стороне и прилежащим к ней углам). Таким образом, MN=AN-AM=DN-DP=NP.
Итак, в прямоугольнике MNPQ две смежные стороны равны, следовательно, MNPQ — квадрат.
- 06.02.2018 09:41
- thumb_up 4
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.