Вопрос по алгебре:
Найдите три последовательных натуральных числа, такие, что квадрат среднего числа в 5 раз больше разности квадратов двух крайних чисел.
- 08.09.2018 00:23
- Алгебра
- remove_red_eye 3260
- thumb_up 35
Ответы и объяснения 1
Пусть х- первое натуральное число. Так как по условию задачи числа должны быть последовательными, то второе число (х+1), третье- (х+2). Известно, что квадрат второго числа в 5 раз больше разности квадратов двух крайних чисел (то есть третьего и первого), поэтому мы можем составить уравнение.
(х+1)^2=5 * ((x+2)^2-x^2))
x^2+2x+1=5 *(x+2-x) (x+2+x)
x^2+2x+1=5*2*(2x+2)
x^2+2x+1=10*(2x+2)
x^2+2x+1=20x+20
x^2-18x-19=0
По теореме Виета:
x1=19 , то есть первое число 19.
х2=-1, не подходит по условию (числа должны быть натуральными).
Значит, второе число- 19+1= 20
третье число-19+2=21.
Ответ:19,20,21.
- 09.09.2018 21:03
- thumb_up 22
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.